Salmonella pathogenicity island 2-encoded type III secretion system mediates exclusion of NADPH oxidase assembly from the phagosomal membrane.

نویسندگان

  • A Gallois
  • J R Klein
  • L A Allen
  • B D Jones
  • W M Nauseef
چکیده

Salmonella typhimurium requires a type III secretion system encoded by pathogenicity island (SPI)-2 to survive and proliferate within macrophages. This survival implies that S. typhimurium avoids or withstands bactericidal events targeted to the microbe-containing vacuole, which include intraphagosomal production of reactive oxygen species (ROS), phagosomal acidification, and delivery of hydrolytic enzymes to the phagosome via fusion with lysosomes. Recent evidence suggests that S. typhimurium alters ROS production by murine macrophages in an SPI-2-dependent manner. To gain insights into the mechanism by which S. typhimurium inhibits intraphagosomal ROS production, we analyzed the subcellular distribution of NADPH oxidase components during infection of human monocyte-derived macrophages by wild-type (WT) or several SPI-2 mutant strains of S. typhimurium. We found that the membrane component of the NADPH oxidase, flavocytochrome b(558), was actively excluded or rapidly removed from the phagosomal membrane of WT-infected monocyte-derived macrophages, thereby preventing assembly of the NADPH oxidase complex and intraphagosomal production of superoxide anion. In contrast, the NADPH oxidase assembled on and generated ROS in phagosomes containing SPI-2 mutant S. typhimurium. Subversion of NADPH oxidase assembly by S. typhimurium was accompanied by increased bacterial replication relative to that of SPI-2 mutant strains, suggesting that the ability of WT S. typhimurium to prevent NADPH oxidase assembly at the phagosomal membrane represents an important virulence factor influencing its intracellular survival.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SseF and SseG are translocated effectors of the type III secretion system of Salmonella pathogenicity island 2 that modulate aggregation of endosomal compartments.

The type III secretion system encoded by Salmonella pathogenicity island 2 (SPI 2) is important for intracellular proliferation in infected host cells. Intracellular Salmonella use this system to translocate a set of effector proteins into the host cell. We studied the role of SseF and SseG, two SPI 2-encoded proteins. SseF and SseG are not required for translocation of effector proteins such a...

متن کامل

Repression of SPI2 transcription by nitric oxide-producing, IFNγ-activated macrophages promotes maturation of Salmonella phagosomes

By remodeling the phagosomal membrane, the type III secretion system encoded within the Salmonella pathogenicity island-2 (SPI2) helps Salmonella thrive within professional phagocytes. We report here that nitric oxide (NO) generated by IFNgamma-activated macrophages abrogates the intracellular survival advantage associated with a functional SPI2 type III secretion system. NO congeners inhibit o...

متن کامل

Salmonella Pathogenicity Island 2 Mediates Protection of Intracellular Salmonella from Reactive Nitrogen Intermediates

Salmonella typhimurium causes an invasive disease in mice that has similarities to human typhoid. A type III protein secretion system encoded by Salmonella pathogenicity island 2 (SPI2) is essential for virulence in mice, as well as survival and multiplication within macrophages. Reactive nitrogen intermediates (RNI) synthesized by inducible nitric oxide synthase (iNOS) are involved in the cont...

متن کامل

Salmonella pathogenicity island 2-encoded proteins SseC and SseD are essential for virulence and are substrates of the type III secretion system.

Survival of Salmonella enterica serovar Typhimurium within host phagocytic cells is a critical step in establishing systemic infection in mice. Genes within Salmonella pathogenicity island 2 (SPI-2) encode a type III secretion system that is required for establishment of systemic infection. Several proteins encoded by SPI-2 have homology to type III secreted proteins from enteropathogenic Esche...

متن کامل

Shigella flexneri phagosomal escape is independent of invasion.

Infections with Salmonella enterica serovar Typhimurium and Shigella flexneri result in mucosal inflammation in response to epithelial cell invasion and macrophage cytotoxicity. These processes are mediated by type III secretion systems encoded in homologous virulence loci in the two species, namely, Salmonella pathogenicity island 1 (SPI-1), carried in the genome, and the Shigella entry region...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of immunology

دوره 166 9  شماره 

صفحات  -

تاریخ انتشار 2001